

Associations between phthalates exposure and health outcomes of newborns and pregnant women in Taiwan

<u>Ching-Chang Lee^{1,4}</u>, Po-Chin Huang¹, Pao-Lin Kuo², Yen-Yin Chou³, Shio-Jean Lin³ ¹Department of Environmental and Occupational Health, ²Department of Obstetrics and Gynecology, ³Department of Pediatrics

> ⁴Research Center of Environmental Trace Toxic Substances, National Cheng Kung University Medical College and Hospital

Research Center of Enviromental Trace Toxic Substances

Physicochemical properties

Table A Physicochemical properties of six phthalates from this study.

Compounds	Dimethyl phthalate	Diethyl phthalate	Di- <i>n</i> -butyl phthalate	Butyl benzyl phthalate	Di(2-ethylhexyl) phthalate	Di <i>-n-</i> octyl phthalate
Abbreviations	DMP	DEP	DBP	BBzP	DEHP	DOP
Chemical formula	$C_{10}H_{10}O_4$	$\mathbf{C}_{12}\mathbf{H}_{14}\mathbf{O}_{4}$	$C_{16}H_{22}O_4$	$C_{19}H_{20}O_4$	$C_{24}H_{38}O_4$	C ₂₄ H ₃₈ O ₄
Molecular weight	194.19	222.23	278.35	312.35	390.62	390.54
Melting point (°C)	5.5	- 40.5	- 35	- 35	- 47	- 46
Boiling point (°C)	282	295~302	340	370	386	390
Vapor pressure (25 °C, mmHg)	1 (100°C)	1.65×10 ⁻³	2.7×10 ⁻⁵	6×10 ⁻⁷	1×10 ⁻⁷	1×10 ⁻⁷
Solubility (mg L ⁻¹ , 25°C)	4000	1000	13	0.7	0.3	3
Log Kow	1.6	2.5	4.5	4.9	7.5	8.1
Log Koc	1.9–2.6	1.8–2.7	3.1–4.2	3.2–4.2	4.9–6.0	6.3

Ref.: Sabljic et al., 1995; Staples et al., 1997; Api 2001; ATSDR, 2001, 2002; Kavlock et al., 2002.

Table B Application of different PAEs in commercial products.

PAEs	Applications
DEP	Perfume, cosmetics, shampoo, shower gel
DBP	PVC , food film, nail polish, perfume, latex adhesive, cellulose plastic, solvent of dye
DEHP	PVC flooring, carpet, wall covering , out layer of electric cord, artificial leather, waterproof cloth, car seat, raincoat, sealants, toy, wrapping, adhesive, pacifier, blood bag
BBP	PVC tubing, PVC flooring, adhesives
DMP	Cellulose plastic, hair preparations

Application

- Phthalates (PAEs) are used as plasticizers to plastics to make them soft and flexible, to cosmetics as a vehicle for fragrance, and to other products.
 - **Hastic Products**
 - **Cosmetics**
 - **Here :** Here : Here :
 - **Kolometry Cables and Wires**

- **Ω Food Contact Materials**
- $\boldsymbol{\Omega}$ Automotive Applications
- **Ω** Medical Devices
- **Ω** Toys

Table C Concentrations of phthalates (μ g/g d. w.) in fish muscle (single and pooled samples).

Species	Ν	DEHP	DBP	DOP	BBzP	DEP	DMP		
Single sample									
Oreochromis miloticus niloticus (吳郭魚)	12	33.6 (1.4-129.5)	0.23 (ND ¹ -0.67)	0.08 (ND-0.4)	0.74 (ND-3.8)	0.11 (ND0.32)	0.03 (ND-0.17)		
<i>Liza subviridis</i> (大鱗鯔; 豆仔)	7	61.8 (1.7-253.9)	0.10 (ND-0.31)	0.109 (ND-0.58)	6.37 (ND-26.8)	0.05 (ND-0.2)	0.27 (ND-1.8)		
			Pooled sar	nple					
Oreochromis miloticus niloticus (吳郭魚)	3 (3, 12)	5.1 (2.6-7.6)	<0.05	ND	ND	0.26 (<0.05-0.49)	<0.05		
Zacco platypus (平領鱲;溪哥)	3 (3, 3, 5)	32.9 (1.5-92.7)	0.06 (<0.05-0.12)	ND	9.4 (ND-28.2)	0.06 (<0.05-0.97)	ND		
Acrossocheilus paradoxus (石斑)	3 (3, 4, 8)	13.6 (1.2-33.1)	0.26 (<0.05-0.7)	ND	ND	0.03 (ND-0.07)	ND		
1.ND. not dotostabl	a tha math	ad datastian li	mits (MDI) wa	vro os followou	· · · · · · · · · · · · · · · · · · ·	for DMD 0.010	uala		

¹:ND: not detectable; ; the method detection limits (MDL) were as followed: 0.011 μ g/g for DMP, 0.010 μ g/g for DEP, 0.008 μ g/g for DBP, 0.006 μ g/g for BBP, 0.010 μ g/g for DEHP, 0.008 μ g/g for DOP

BSAF (Biota-Sediment Accumulation Factor) = (PAEs conc. in fish/ lipid content in fish)÷ (PAEs conc. in sediment/ organic carbon in sediment)

Figure C Bio-sediment accumulation factor (BSAF) of six phthalates in different fish species.

		DEHP				
Parameters	Low-flow season	High-flow season	All season	Low-flow season	High-flow season	All season
DO	-0.254*	-0.583*	-0.286*	✓BOD, N	NH ₃ -N, CO	D, and E. coli
BOD ₅	0.520*	0.766*	0.567*	indicate	that the	biological and
SS	-0.101*	-0.205*	-0.171*	chemica	l pollution	of rivers.
NH ₃ -N	0.402*	0.775*	0.479*	✓ Consiste	ent result	ts of their
Temperature	0.302*	-	-	relation (r = 0.	ship to DEI 41~0.57) re	eveal that they
рН	-0.274*	-0.348*	-0.263*	may de	crease the b	oio-degradation
COD	0.333*	0.712*	0.412*	process by decr	of DEHP i easing disso	n the sediment olved oxygen in
E.coli	0.712*	0.656*	0.541*	the rive	r.	

Table D Spearman correlation coefficients between DEHP and DBP level in sediment and severalaquatic factors (N=64 for low and high-flow seasons; N=128 for all seasons).

*: p<0.05.

Figure D Multiple regression of DEHP level in sediment and water quality index in each river from 17 Taiwan principal rivers (R²=0.453, p<0.001, N=125; Y_{DEHP} in sediment=4.478-0.317 X_{SS}+0.248 X_{NH3-N}-2.808 X_{Water temperature} +0.258 X_{COD})-All season. All the parameters were log-transferred.

Objectives

Part I: Association between Phthalate Exposure and Thyroid Hormone in Pregnant Women

- To determine the concentrations of urinary phthalate monoesters in pregnant women.
 - To investigate the association between phthalate exposure and thyroid hormone during pregnancy.

Objectives

Part II: Association between Prenatal Exposure to Phthalates and the Health of Newborns

- To determine the concentrations of amniotic fluid phthalate monoesters in pregnant women.
 - To evaluate the association between prenatal exposure of the fetus to phthalates in amniotic fluid and maternal urine and the health of newborns.

Objectives

Part III: Phthalates may alter thyroid hormones *in utero*: A follow-up study

★ To follow-up our previously established participants in order to determine the correlation between phthalate exposure and thyroid hormones in pregnant women and newborns.

Framework

To choose the susceptible population from the possibly highest phthalate exposure population in Taiwan

Pregnant Women

- Conc. of urinary m-PAEs
- Conc. of m-PAEs in serum
- Serum thyroid hormone (TSH, T₄, T₃, FT₄)
- Demographic characteristics (Age, gestation, smoke etc.)

Newborns

- Conc. of m-PAEs in amniotic fluid
- Conc. of m-PAEs in cord blood
- •Cord blood thyroid hormone (TSH, T₄, T₃, FT₄)
- •Health status of newborns (Anogenital distance, birth wt., etc.)

Association between Phthalate Exposure and Health Effects of Pregnant Women and Newborns in Taiwan

- Correlation between urinary m-PAEs and thyroid hormone in pregnant women.
- Correlation between amniotic fluid m-PAEs and the health of newborns.
- Correlation between cord blood m-PAEs and thyroid hormone in newborns.
- Correlation of m-PAEs among amniotic fluid, urine, serum and cord blood.
- Provide an insight of potential health effects of phthalate exposure in pregnant women and newborns.

Materials and Methods

Measured Parameters

- <u>monom</u>ethyl <u>p</u>hthalate (MMP)
- monoethyl phthalate (MEP)
- <u>m</u>ono<u>b</u>utyl <u>p</u>hthalate (MBP)
- <u>monobenzyl p</u>hthalate (MBzP)
- mono-2-ethylhexyl phthalate (MEHP)
- Sample
 - Urine/ Amniotic fluid
 - Serum
- Analytical method

- LC-MS/MS (Agilent 1100/API 3000) Electrospray ionization mass spectrometry (ESI MS)

Measured Parameters

- Thyroid hormones
 - Thyroid stimulating hormone (TSH)
 - Thyroxin (T₄)
 - Triiodotyronine (T₃)
 - Free thyroxin (FT₄)
- Questionnaires
 - Age, BMI, gestation age, Smoking, Medical care etc.
 - Food consumption
 - Cosmetic usage
 - Personal care product usage
 - Building characteristics

- Physical examination
 - Anogenital distance (AGD)
 - Birth weight
 - Birth height
 - Gestational age
 - Anogenital index (AGI)

17

Characteristics	Mean ± SD	
Age (years)	33.6 ± 3.3	
Body mass index (BMI)	20.9 ± 2.5	
Duration of gestation (weeks)	27.9 ± 2.3	
Pregnancies and births		
Number of current pregnancy	1.9 ± 1.0	
Number of current birth	1.5 ± 0.6	
Smoking status (<i>n</i> /%)		
Active smoker	0/0	
Passive smoker	14/18.4	
Non-smoker	62/81.6	
Alcohol drinker (<i>n</i> /%)	0/0	
New decoration of living/ working place duri	ng previous 1 year (<i>n</i> /%) ^a	
Home		
Moving to new decorated house	7/9.2	
Just decorated	4/5.3	
Workplace		
Moving to new decorated workplace	2/2.6	
Just decorated	6/7.9	
Medical care during previous 3 months $(n/\%)$		
Blood transfusion	3/3.9	Contraction Sector
Intravenous drip	3/3.9	
Oxygen mask	1/1.3	- Cr

Table I-1 Demographic characteristics of study participants (n = 76).

18 ^a Moving to new decorated house or workplace means moved into a new building. Just decorated means the place you live or work have decorated recently such as painting or changing the floor.

Urinary phthalate monoesters ^a	Perc	Percentile						Median (range)			
	п	Min	5th	25th	50th	75th	95th	Max	US pregna	ant women ^c	US female population ^d
Creatine unadjusted (ng/ml) ^b											· - · - ·
MBP	76	13.2	21.6	40.6	81.8	131.0	368.0	580.0	_	> 2.5	30.0 (5.8-167)
MBzP	76	0.9	0.9	0.9	0.9	0.9	33.4	35.3	_	< 10 ↑	16.0 (2.4-103)
MEP	76	0.7	2.20	13.1	27.7	52.4	2346.0	5466.0	_	< 6	174.0 (28-2230)
MEHP	76	5.85	7.21	13.1	20.6	38.6	273.0	381.0	_	> 6.5	3.0 (ND-21.6)
MMP	76	0.7	0.7	0.7	4.3	14.7	87.8	237.2	_		
Creatinine-adjusted (µg/g creat	inine)										
MBP	76	57.8	88.9	127.0	195.0	339.0	839.0	1901.0	42.6 (21.3	-105) > 4.	5 28.6 (10.6–131)
MBzP	76	0.5	0.8	2.0	3.7	6.0	24.0	69.9	12.1 (5.6-	120) < 4	14.7 (4.84-80.0)
MEP	76	5.0	8.3	27.0	68.0	205.0	4414.0	13 299.0	236 (26.7	-5520) < 3.	5 157 (42.7-1920)
MEHP	76	12.2	15.8	31.4	60.8	121.0	885.0	1251.0	4.6 (1.8-	.449) > 1	3 3.33 (ND-16.3)
MMP	76	0.4	0.9	3.7	10.8	34.9	263.0	363.0	-		_

Table I-2 Levels of five urinary phthalates monoester in pregnant Taiwanese women and comparison with other studies (μ g/g creatinine).

^aMBP, monobutyl phthalate; MBzP, monobenzyl phthalate; MEP, monoethyl phthalate; MEHP, mono-2-ethylhexyl phthalate and MMP, monomethyl phthalate. ^bDetection limit (LOD) of phthalate monoesters were: MBP, 5; MBzP, 1.8; MEP, 1.4; MEHP, 0.9; MMP, 1.4 ng/ml, respectively. Half of LOD was calculated as the detected value below the LOD. ^cNew York pregnant women 18–35 years old (n = 25). ^dData from NHANES 1999–2000 included children age 6 and older) (n = 1326, range: 10th–95th percentile).

Table I-3 Distribution of thyroid hormones in pregnant women.

		Percentile						
Hormones ^a	Min	5th	50th	95th	Max	range		
T ₃ (ng/dL)	72.6	86.3	132.0	209.0	246.0	84.6-202.0		
$T_4 (\mu g/dL)$	4.39	5.31	8.85	11.2	13.6	5.13-14.1		
Free T ₄ (ng/dL)	0.46	0.69	0.93	1.25	1.35	0.93-1.7		
TSH (μ IU/mL)	0.22	0.31	1.06	3.4	5.19	0.27-4.2		

^aThe analytic sensitivities of T₃, T₄, free T₄, and TSH were 19.5 ng/dL, 0.42 μg/dL, 0.023 ng/dL and 0.014 μlU/mL, respectively; the coefficient variations of T₃, T₄, free T₄, and TSH were 2.9%, 4.2%, 3.1%, and 3.0%, respectively.

Table I-4 Spearman correlation coefficients ^a between thyroid hormone, age, BMI, duration of gestation and urinary phthalate monoester levels (n = 75).

	TSH	T ₃	T ₄	FT ₄	Age	BMI	Gestation
TSH	1						
T ₃	0.145	1					
T_4	0.291*	0.709*	1				
FT_4	0.172	0.299*	0.761*	1			
Age	0.203	-0.307*	-0.218*	-0.008	1		
BMI	-0.044	0.309	0.137	-0.010	-0.106	1	
Gestation	-0.106	-0.018	0.038	0.057	-0.029	-0.131	1
MBP	0.079	-0.234	-0.248*	-0.368*	0.082	0.081*	-0.098
MEP	-0.082	-0.019	-0.039	0.017	0.080	0.095*	0.199
MEHP	-0.060	-0.067	-0.100	-0.090	0.166	-0.030	0.030*
MBzP	-0.080	-0.084	0.034	-0.007	-0.064	-0.027	0.118
MMP	-0.078	-0.259	-0.089	0.007	-0.038	-0.006	-0.004

^a Spearman correlation coefficients, *: p < 0.05.

level in pregnant women at the 2nd trimester.

Human Reproduction Vol.22, No.10 pp. 2715–2722, 2007 Advance Access publication on August 17, 2007

Associations between urinary phthalate monoesters and thyroid hormones in pregnant women

Po-Chin Huang¹, Pao-Lin Kuo², Yue-Liang Guo³, Pao-Chi Liao¹ and Ching-Chang Lee^{1,4}

¹Department of Environmental and Occupational Health, Medical College, National Cheng Kung Universitys, Tainan, Taiwan, Republic of China; ²Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China; ³Department of Environmental and Occupational Medicine, College of Medicine, National Taiwan University, Taiwan, Republic of China

⁴Correspondence address. Tel: +886-6-274-4412; Fax: +886-6-274-3748; E-mail: cclee@mail.ncku.edu.tw

MBP	-0.110	<0.001	-0.112	0.003
MEP	0.026	0.124	0.013	0.398
MEHP	-0.015	0.474	-0.007	0.814
MBzP	0.022	0.232	0.032	0.224
MMP	0.016	0.165	0.015	0.347

^a One outlier was excluded because of hypothyroidism (n=75).

→Multiple regression: FT_4 : β = -0.110, R²=0.24, p<0.05 T₄: β =-0.112; R²=0.187, p<0.05

Health status	Males (n=33)	Females (n=32)	P-value ³
Birth weight (g)	3171 (1678-4260)	3002 (2000-3935)	0.156
Birth length (cm)	49.6 (42.0-56.0)	48.3 (42.5-53.5)	0.023*
Gestational age (weeks)	39.0 (35.3-41.7)	38.4 (33.6-40.3)	0.020*
Ano-genital distance (AGD) (mm) ¹	23 > (10-36)	16 (7-23)	<0.001*
AGI-W(mm/kg) ²	7.16 (3.18-13.09)	5.37 (2.30-8.96)	0.001*
AGI-L (×10 ³) ²	4.55 (2.17 -7.35)	3.29 (1.41 -5.07)	<0.001*

Table II-1 Physical examination of male and female newborns (n = 65).

¹ The AGD of two girls and boys, respectively, were not available.

² AGI=ano-genital index; AGI-W= AGD/birth weight; AGI-L=AGD/ birth length.

24

³ *: p<0.05

Female infants	Min	10 th	50 th	90 th	Max
MBP	39.3	45.6	85.5	134.6	192.0
MEHP	ND ²	5.0	24.0	91.1	148.0
MEP	ND	ND	ND	3.9	6.5
MBzP	ND	ND	ND	84.1	233.0
MMP	ND	ND	ND	ND	2.92
Male infants	Min	10 th	50 th	90 th	Max
Male infants MBP	Min 28.4	10 th 44.3	50 th 81.3	90 th 127.8	Max 145.0
Male infants MBP MEHP	Min 28.4 ND ²	10 th 44.3 2.6	50 th 81.3 22.1	90 th 127.8 100.6	Max 145.0 110.0
Male infants MBP MEHP MEP	Min 28.4 ND ² ND	10 th 44.3 2.6 ND	50 th 81.3 22.1 ND	90 th 127.8 100.6 4.4	Max 145.0 110.0 7.7
Male infants MBP MEHP MEP MBzP	Min 28.4 ND ² ND ND	10 th 44.3 2.6 ND ND	50 th 81.3 22.1 ND ND	90 th 127.8 100.6 4.4 87.9	Max 145.0 110.0 7.7 104.0

Table II-2 Concentrations of five phthalate monoesters in amniotic fluid from female and male infants (ng/mL, n=64)¹.

¹One amniotic fluid sample was failed during analysis.

²ND=not detected, detection limit of MMP, MEP, MBP, MBzP and MEHP were as follow: 1.4, 1.0, 1.4, 1.4, 0.9 ng/mL

	Min	10th	50th	90th	Max
Female fetus	s group				
MBP	8.9	26.9	78.0	30.9	541.0
MEHP	ND	11.8	24.6	68.6	1140.0
MEP	ND	3.0	22.8	288.2	415.0
MBzP	ND	ND	3.0	16.8	845.0
MMP	ND	ND	7.1	19.9	48.4
Male fetus g	group				
MBP	19.4	28.1	79.6	232.6	524.0
MEHP	6.0	11.9	26.3	120.3	151.0
MEP	3.6	4.9	19.1	324.4	1420.0
MBzP	ND	ND	2.5	13.9	98.5
MMP	ND	ND	6.8	20.3	26.9

Table II-3 Concentrations of maternal urinary phthalate monoesters in the 1st trimester (ng/mL, n=64)¹.

ND = not detectable. The detection limits for MMP, MEP, MBP, MBzP, and MEHP were 1.4,

1.0, 1.4, 1.4, and 0.9 ng/mL, respectively.

^a One amniotic fluid sample failed during analysis.

26

It is indicated that current levels of exposure to phthalate in pregnant women may only partly represent *in utero* fetal exposure

Figure II-1 Distribution plot of MBP levels in maternal urine and amniotic fluid (n=59). All the data were log-transformed.

27

Health status in female infants		MBP-AF ²		MEHP-AF ³			
	Low ⁴ (n=15)	High ⁴ (n=16)	P-value ¹	Low ⁴ (n=15)	High ⁴ (n=16)	P-value ¹	
Birth weight (g)	2810±439	3172±398	0.031*	2918±448	3061±467	0.527	
Birth length (cm)	47.3±2.3	49.2±1.7	0.018*	48.1±2.1	48.6±2.4	0.138	
Gestational age (weeks)	38.1±1.5	38.7±1.0	0.205	38.4±0.9	38.4±1.6	0.591	
AGD (mm)	17.6±4.0	13.9±3.8	0.024*	17.0±4.1	14 .2 ±4.1	0.109	
AGI-W (mm/kg)	6.2±1.6	4.5±1.5	0.007*	6.0±1.4	4.7±1.8	0.016*	
AGI-L (×10 ³)	3.7±0.9	2.8±0.8	0.008*	3.6±0.8	2.9±0.9	0.015*	

Table II-4 Distribution of health status in females categorized by median levels of phthalate monoester in amniotic fluid (-AF) (n = 31).

¹Wilcoxon Rank Sum Test, *: p < 0.05;

²AGD data were lacking for one female newborn in each group.

³AGD data were lacking for two female newborns in the high MEHP-AF group.

²⁸ ⁴Median levels of amniotic fluid MBP in low and high group were 67 and 104 ng/mL, respectively; those of MEHP were 9.5 and 38.8 ng/mL, respectively.

Table II-5. Distribution of health status in boys category by median levels of phthalate monoester in amniotic fluid. (n = 33).

Health status in		MBP		МЕНР				
male infants	Low (n=16)	High (n=17)	P-value	Low (n=16)	High (n=17)	P-value		
Birth weight (g)	3146±481	3194±469	0.640	3213±440	3131±515	0.815		
Birth length (cm)	49.2±2.5	50.0±2.8	0.705	49.4±2.4	49.7±3.0	0.971		
Gestational age (weeks)	39.1±1.0	38.9±1.4	0.396	39.1±0.9	38.9±1.5	0.787		
AGD (mm)	21.2±6.5	24.1±5.7	0.234	23.3±6.8	22.2±5.6	0.606		
AGI-W (mm/kg)	6.6±2.1	7.7±2.2	0.206	7.4±2.6	6.9±1.7	0.635		
AGI-L (×10 ³)	4.3±1.2	4.8±1.2	0.304	4.7±1.4	4.4±1.0	0.649		
¹ One male infant of ea	nch group in M	BP-AF and ME	HP-AF, respe	ctively, were la	ck of AGD.			

Table II-6 Spearman correlation coefficients¹ between birth weight, birth length, gestational age, AGD, AGI-W, AGI-L, and phthalate monoester levels in amniotic fluid in female infants $(n = 29)^2$.

	MMP	MEP	MBP	MBzP	MEHP	BW	BL	GA
BW	0.15	0.07	0.16	-0.36	-0.17	1		
BL	0.29#	0.01	0.20	-0.35	-0.10	0.83*	1	
GA	0.27	0.24	0.18	-0.22	-0.06	0.43*	0.48*	1
AGD	-0.42	-0.10	-0.31#	0.09	-0.13	-0.16	-0.22	-0.46*
AGI-W	-0.41	-0.10	-0.32*	0.32	0.03	-0.58*	-0.54*	-0.54*
AGI-L	-0.44	-0.10	-0.33*	0.15	-0.10	-0.27	-0.27#	-0.50*

¹*:p<0.05^{; #}: p<0.06.

² BW=birth weight, BL=birth length, GA=gestational age, AGD=ano-genital distance, AGI-W=AGD/BW, AGI-L=AGD/ BL

Negative associations among amniotic fluid MBP and AGI

Figure II-2 (A) Linear regressions between MBP in amniotic fluid and AGI-W in females at birth (n=29, R²=0.14, p=0.043); (B) Linear regressions between MBP in amniotic fluid and AGI-L in females at birth (n=29, R²=0.16, p=0.032).

Figure III-3 Multiple regression of AGI, MBP in amniotic fluid and gestational age adjustment of gestational age and other phthalate monoesters (amniotic fluid MBP: $\beta = -2.73$, p = 0.041; gestational age: $\beta = -0.899$, p = 0.006).

Table III-1 Concentrations of phthalate monoesters in urine, serum and cord blood at delivery (ng/mL, n=61).

	Uri	ne	Ser	um	Cord blood		
Mono- PAEs	Median (Range)	10-90th	Median (Range)	10-90th	Median (Range)	10-90th	
MBP ^a	114 (25.4-1830)	36.9-550.6	158.0 (59.6-1080)	64.9-413.0	256.0 (65.2-815)	97.4-604.8	
MEHP	40.2 (3.6-958)	8.4-152.0	21.0 (9.2-99.2)	11.7-37.1	24.7 (11.0-665.0)	14.2-65.9	
MEP	36.4 (ND ^b -1980)	4.6-236.8	2.8 (ND-26.5)	ND-6.3	ND (ND-9.3)	ND-3.4	
MBzP	5.7 (ND-218.0)	1.9-49.2	ND (ND-10.1)	ND-2.8	ND (ND-26.8)	ND-3.6	
MMP	8.3 (ND-169)	1.7-38.0	ND (ND-3.7)	ND-2.4	ND (ND-13.3)	ND-ND	

^aMBP = monobutyl phthalate; MBzP = monobenzyl phthalate; MEP = monoethyl phthalate; MEHP = mono-2-ethylhexyl phthalate; MMP = monomethyl phthalate. ^bDetection limit (LOD) of phthalate monoesters were: MBP, 1.4; MBzP, 1.4; MEP, 1.0; MEHP, 0.9; MMP, 1.4 ng/mL, respectively. Half of LOD was calculated as the detected value below the LOD.

Table III-2 Concentrations of thyroid hormones1 in maternal serum during pregnancyand cord blood at delivery (n=61).

Serum	First-trimester		Second-trimester		Third-t	rimester	Cord blood	
Thyroid Hormones	Median	Range	Median	Range	Median	Range	Median	Range
TSH (μIU/mL)	1.13	0.01-4.38	1.06	0.23-5.19	2.08	0.38-6.07	7.05	1.63-289
T ₃ (ng/dL)	123	70.2-230	134	72.6-246	140	82.4-277	56.3	35.1-84.6
$T_4(\mu g/dL)$	8.26	3.37-12.1	9.01	4.39-13.4	9.62	3.60-16.9	7.66	3.65-11.7
FT ₄ (ng/dL)	0.95	0.62-1.29	0.93	0.46-1.29	0.99	0.33-1.31	1.13	0.49-1.45

¹Reference values for thyroid hormones in Taiwan: TSH: 0.27-4.2; T₃: 84.6-202.0; T₄: 5.13-14.1; FT₄: 0.93-1.7. The analytic sensitivities of T₃, T₄, free T₄, and TSH were 19.5 ng/dL, 0.42 μ g/dL, 0.023 ng/dL and 0.014 μ lU/mL, respectively. The coefficient variations of T₃, T₄, free T₄, and TSH were 3.0%, 4.1%, 3.2%, and 2.9%, respectively.

	Maternal age	Gestationa l age	MBP-C ^b	MEHP-C ^b	MEP-C ^b	MBzP-C ^b	MMP-C ^b
Maternal age	1	0.208	-0.073	0.007	0.045	-0.135#	0.112
Gestational age	0.208	1	0.028	0.016	0.150	0.229	0.063
TSH	0.176	-0.396	- 0.2 77 [‡]	0.109	0.108	-0.084	-0.043
T ₄	0.078	0.0343	-0.157 [#]	-0.045	-0.026	0.038	-0.136
T ₃	-0.133	-0.069	0.079	0.211	0.183	-0.053	-0.003
FT ₄	-0.112	0.103	0.162	-0.062	0.049	0.003	-0.109
TSH×T ₄	0.183	-0.389	-0.230*	0.096	0.124	-0.101	-0.072
TSH×FT ₄	0.169	-0.390	-0.214#	0.095	0.128	-0.109	-0.069
FT_4/T_3	0.071	0.084	-0.027	-0.213	-0.104	0.006	-0.096
FT ₄ /T ₄	-0.200	0.061	0.346**	0.017	0.066	-0.049	0.102
T_{3}/T_{4}	-0.072	-0.162	0.133#	0.147	0.122	-0.057	0.091
T ₄ /TSH	0.019	0.287	0.089	0.000	-0.131	0.108	-0.002

Table III-3 Correlation ^a coefficients between fetal thyroid hormones and phthalate monoesters in cord blood samples (n=60)^a

^a Spearman correlation: ^{**}p<0.01, ^{*}p<0.05, [#]p<0.1. ^b-C: Phthalate monoesters in cord blood sample.

Figure III-2 Linear correlation between log MBP levels and TSH×T₄ in cord blood 7. samples (R²=0.081, p=0.028, n=60).

Table III-4 Multivariate regression between TSH and T ₄ and their corresponding phthalate monoesters in cord blood (n=60) ^a										
Variables	TSH (µIU/	mL)	TSH×T4		TSHxFT4		FT4/T4		T4 (µg/dL)	
	Estimate ^a	Prob > t								
Intercept	3.49	0.010	171.4	0.004	20.6	0.001	0.123	0.006	20.4	0.017
MBP	-0.217	0.044*	-42.8	0.0287	-4.49	0.075#	0.036	0.004**	-1.71	0.036*
MEHP	-	-	-	-	-	-	-	-	-	-
Maternal age	-	-	-	-	-	-	-0.002	0.087#	0.113	0.106
Gestational age	-0.045	0.117	-	-	-	-	-	-	-0.315	-0.104
R ²	0.087	0.044	0.092	0.028	0.054	0.075	0.171	0.005	0.115	0.046
T 1 1 1 0										

38

-, Excluded from model.

^aValues are beta coefficients except for \mathbb{R}^2 ; # p< 0.10. * p< 0.05. **p< 0.01.

Possible Hypotheses

- First, we postulated phthalate exposure may affect fetal thyroid function indirectly via decreased thyroid hormones from their mother.
 - Animal studies have shown that *in utero* exposure to thyroid hormone affects the regulation of the hypothalamus-pituitary-thyroid axis in newborns (Alonso et al., 2007; Piosik et al., 1997).
 - Our previous study showed decreased FT_4 and T_4 levels with increasing urinary MBP levels in pregnant women during the second trimester (Huang et al., 2007).
- Second, phthalate monoesters penetrate the human placenta and may have direct effects on fetal thyroid function.
 - Some toxicological studies have shown that certain phthalates, such as DBP and DEHP, are possible thyroxine antagonists that affect the transportation, secretion, and action of thyroid hormones in adult animals (Hinton et al., 1986; Poon et al., 1997; Sugiyama et al., 2005).
 - Although little information is available about phthalate exposure *in utero* and its effects on fetal thyroid function, some studies (Huang et al., 2007; Meeker et al., 2007) have shown possible negative effects in humans.

39

Acknowledgements

- We are grateful for the financial support of Taiwan National Science Council under the Grants NSC 93-2621-Z-006-005, 94-2621-Z-006-005, 95-2621-Z-006-005 and deeply appreciative of the pregnant women participated in this study.
- Livestock Research Institute, Council of Agriculture
 - Main-Lian Lee, Ming-Chih Teng
- Department of Pediatrics

– All stuffs

- Yen-Yin Chou, Shio-Jean Lin
- Department of Obstetrics and Gynecology
 - Pao-Lin Kao, and other gynecologists
- Department of Environmental and Occupational Health
 - Ching-Chang Lee, Yue-Liang Guo, Pao-Chi Liao, Ying-Jan Wang
- Research Center of Environmental Trace Toxic Substances

Thanks for your attention!

Comments!