

Functional characterization of *de novo* designed peptide derived from CXCL8 in inflammation and breast cancer progression

生化學科 江信仲

110/4/20

http://altered-states.net/barry/newsletter611/

Inflammation

1. Bacteria and other pathogens enter wound.

2. Platelets from blood release blood-clotting proteins at wound site.

3. Mast cells secrete factors that mediate vasodilation and vascular constriction. Delivery of blood, plasma, and cells to injured area increases.

4. Neutrophils secrete factors that kill and degrade pathogens.

 Neutrophils and macrophages remove pathogens by phagocytosis.

6. Macrophages secrete hormones called cytokines that attract immune system cells to the site and activate cells involved in tissue repair.

7. Infiammatory response continues until the foreign material is eliminated and the wound is repaired.

https://montereybayholistic.wordpress.com/2012/12/21/20-ways-to-fight-inflammation

Chemokine Function

▲ 想清大學

Peptides design for blockage of CXCR1

p_wt14

p_wt16

p_wt18

Shinn-Jong J, et al Scientific Reports. 2015

Shinn-Jong J, et al Scientific Reports. 2015

Tzu Chi University

** 10,00,00,00

Shinn-Jong J, et al Scientific Reports. 2015

Tzu Chi University

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN

Received: 23 July 2015 Accepted: 23 November 2015 Published: 22 December 2015

Peptides derived from CXCL8 based on *in silico* analysis inhibit CXCL8 interactions with its receptor CXCR1

Shinn-Jong Jiang¹, Je-Wen Liou^{1,2}, Chun-Chun Chang^{2,3}, Yi Chung⁴, Lee-Fong Lin⁴ & Hao-Jen Hsu⁴

Effect of RF16 peptide on TNF-α-induced proinflammatory cytokine mRNA expressions

Effect of RF16 peptide on TNF-α-induced proinflammatory cytokine mRNA expressions

Effect of RF16 peptide on IL-8 induced proinflammatory cytokine mRNA expressions

Effect of RF16 peptide on IL-8 induced proinflammatory cytokine mRNA expression

Effect of RF16 peptide on TNF-α-induced proinflammatory cytokines secretion

Effect of RF16 peptide on IL-8 induced proinflammatory cytokines secretion

Effect of RF16 peptide on TNF-α-induced Reactive Oxygen Species

H2DCFDA Tzu Chi University

Detection of RF16 and CF25 peptides induced cytotoxicity in THP-1 cells

NF-κB pathway

tp://tgrbio.com/alphascreerTzunChirUniversity/

Effect of peptide RF16 on TNF-α-activated NF-κB pathway

Tzu Chi University

Tzu Chi University

Effect of RF16 peptide on TNF-α-activated P38/JNK signal pathway

Research article

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

Christophe Ginestier,^{1,2} Suling Liu,¹ Mark E. Diebel,¹ Hasan Korkaya,¹ Ming Luo,³ Marty Brown,¹ Julien Wicinski,² Olivier Cabaud,² Emmanuelle Charafe-Jauffret,² Daniel Birnbaum,² Jun-Lin Guan,³ Gabriela Dontu,¹ and Max S. Wicha¹

2010 Feb;120(2):485-97. doi: 10.1172/JCI39397.

Stages of Breast Cancer

increased risk of

in both breasts.

developing cancer

1

Cancer in the breast tissue tumor less than 1 inch across.


```
Cancer in the breast
tissue tumor less
than 2 inches
across. Cancer may
also spread to
auxiliary lymph
nodes.
```

Tumor is larger than 2 inches across with extensive spread to auxiliary or nearby lymph nodes. Possible dimpling, inflammation or change of skin color.

- +** 10, 30, 57

4 Spread of cancer

Spread of cancer beyond the immediate region of the breast.

100% SURVIVAL RATE

Breast cancer subtype	Estrogen receptor and/or Progesterone receptor	HER2
ER-positive (Hormone receptor positive)	+	-
HER2-positive	+ or -	+++
Triple-negative		-

R SYSTEMS A Microenvironmental Regulation of Tumor Growth & Metastasis

Learn more | rndsystems.com/tumormicroenvironment

f y in **™ ☑** bio-techne.com

Tzu Chi University

Global info@bio-techne.com techsupport@bio-techne.com North America TEL 800 343 7475 Europe|Middle East | Africa TEL +44 (0):1235 529449 China info.cn@bio-techne.com TEL +86 (21) 52380373 Rest of World bio-techne.com/find-us/distributors TEL +1.612 379 2956

Metastasis

27

EMT (epithelial-mesenchymal transition)

Colony Formation (MCF-7)

Colony Formation (MDA-MB-231)

Effect of RF16 peptide on IL-8-induced migration IL-8 20ng/ml RF16 1 μM Control

IL8+RF16

0 hr

6 hr

IL8+RF16 (1 µM)

0 hr

6 hr

MDA-MB-231

Effect of RF16 peptide on IL-8-induced migration

Effect of RF16 peptide on IL-8-induced migration

MCF-7

31

Effect of RF16 peptide on IL-8-induced invasion

IL-8 + RF16 1nM

IL-8 + RF16 0.1uM

IL-8 + RF16 1uM

Effect of RF16 peptide on IL-8-induced invasion

Effect of RF16 peptide on IL-8-induced MMP activity expressions

Effect of RF16 peptide on IL-8-modulated E-cadherin and Fibronectin mRNA expressions

Effect of RF16 peptide on IL-8-modulated Ecadherin and Fibronectin expressions

Effect of RF16 peptide on IL-8-induced p38 and PI3K activations

15 min

30 min

Xenograft breast tumor model

Xenograft breast tumor model

Sec. A

清

Xenograft breast tumor model

Xenograft breast tumor model

Conclusion

De novo designed peptide derived from CXCL8 can decline TNF-α-induced inflammation on macrophages and obtains the synergistic effect on docetaxel promoted breast tumor suppression

誌謝

生命科學系 許豪仁老師

花蓮慈院	
一般外科	張群銘醫師
檢驗醫學科	張淳淳主任

學生 杜宣諭 賴宜萱

助理 孫毓婷

